skip to main content


Search for: All records

Creators/Authors contains: "Vecchi, Gabriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    On 1 September 2021, the remnants of Hurricane Ida transformed into a lethal variant of tropical cyclone in which unprecedented short‐duration rainfall from clusters of supercells produced catastrophic flooding in watersheds of the Northeastern US. Short‐duration rainfall extremes from Ida are examined through analyses of polarimetric radar fields and rain gauge observations. Rainfall estimates are constructed from a polarimetric rainfall algorithm that is grounded in specific differential phase shift (KDP) fields. Rainfall accumulations at multiple locations exceed 1000‐year values for 1–3 hr time scales. Radar observations show that supercells are the principal agents of rainfall extremes. Record flood peaks occurred throughout the eastern Pennsylvania—New Jersey region; the peak discharge of the Elizabeth River is one of the most extreme in the eastern US, based on the ratio of the peak discharge to the sample 10‐year flood at the gaging station. As with other tropical cyclones that have produced record flooding in the Northeastern US, Extratropical Transition was a key element of extreme rainfall and flooding from Ida. Tropical and extratropical elements of the storm system contributed to extremes of atmospheric water balance variables and Convective Available Potential Energy, providing the environment for extreme short‐duration rainfall from supercells.

     
    more » « less
  3. Abstract In this study, we investigate the response of tropical cyclones (TCs) to climate change by using the Princeton environment-dependent probabilistic tropical cyclone (PepC) model and a statistical-deterministic method to downscale TCs using environmental conditions obtained from the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented Low Ocean Resolution (HiFLOR) model, under the Representative Concentration Pathway 4.5 (RCP4.5) emissions scenario for the North Atlantic basin. The downscaled TCs for the historical climate (1986-2005) are compared with those in the mid- (2016-35) and late-twenty-first century (2081-2100). The downscaled TCs are also compared with TCs explicitly simulated in HiFLOR. We show that while significantly more storms are detected in HiFLOR towards the end of the twenty-first century, the statistical-deterministic model projects a moderate increase in TC frequency, and PepC projects almost no increase in TC frequency. The changes in storm frequency in all three datasets are not significant in the mid-twenty-first century. All three project that storms will become more intense and the fraction of major hurricanes and Category 5 storms will significantly increase in the future climates. However, HiFLOR projects the largest increase in intensity while PepC projects the least. The results indicate that HiFLOR’s TC projection is more sensitive to climate change effects and statistical models are less sensitive. Nevertheless, in all three datasets, storm intensification and frequency increase lead to relatively small changes in TC threat as measured by the return level of landfall intensity. 
    more » « less
  4. Abstract

    Atlantic hurricanes are a major hazard to life and property, and a topic of intense scientific interest. Historical changes in observing practices limit the utility of century-scale records of Atlantic major hurricane frequency. To evaluate past changes in frequency, we have here developed a homogenization method for Atlantic hurricane and major hurricane frequency over 1851–2019. We find thatrecordedcentury-scale increases in Atlantic hurricane and major hurricane frequency, and associated decrease in USA hurricanes strike fraction, are consistent with changes in observing practices and not likely a true climate trend. After homogenization, increases in basin-wide hurricane and major hurricane activity since the 1970s are not part of a century-scale increase, but a recovery from a deep minimum in the 1960s–1980s. We suggest internal (e.g., Atlantic multidecadal) climate variability and aerosol-induced mid-to-late-20th century major hurricane frequency reductions have probably masked century-scale greenhouse-gas warming contributions to North Atlantic major hurricane frequency.

     
    more » « less
  5. Abstract

    There is a lack of consensus on whether North Atlantic tropical cyclone (TC) outer size and structure (i.e., change in outer winds with increasing radius from the TC) will differ by the late twenty-first century. Hence, this work seeks to examine whether North Atlantic TC outer wind field size and structure will change by the late twenty-first century using multiple simulations under CMIP3 SRES A1B and CMIP5 RCP4.5 scenarios. Specifically, our analysis examines data from the GFDL High-Resolution Forecast-Oriented Low Ocean Resolution model (HiFLOR) and two versions of the GFDL hurricane model downscaling climate model output. Our results show that projected North Atlantic TC outer size and structure remain unchanged by the late twenty-first century within nearly all HiFLOR and GFDL hurricane model simulations. Moreover, no significant regional outer size differences exist in the North Atlantic within most HiFLOR and GFDL hurricane model simulations. No changes between the control and late-twenty-first-century simulations exist over the storm life cycle in nearly all simulations. For the simulation that shows significant decreases in TC outer size, the changes are attributed to reductions in storm lifetime and outer size growth rates. The absence of differences in outer size among most simulations is consistent with the process that controls the theoretical upper bound of storm size (i.e., Rhines scaling), which is thermodynamically invariant. However, the lack of complete consensus among simulations for many of these conclusions suggests nontrivial uncertainty in our results.

     
    more » « less
  6. Abstract

    Recent climate modeling studies point to an increase in tropical cyclone rainfall rates in response to climate warming. These studies indicate that the percentage increase in tropical cyclone rainfall rates often outpaces the increase in saturation specific humidity expected from the Clausius-Clapeyron relation (~7% °C−1). We explore the change in tropical cyclone rainfall rates over all oceans under global warming using a high-resolution climate model with the ability to simulate the entire intensity spectrum of tropical cyclones. Consistent with previous results, we find a robust increase of tropical cyclone rainfall rates. The percentage increase for inner-core tropical cyclone rainfall rates in our model is markedly larger than the Clausius-Clapeyron rate. However, when the impact of storm intensity is excluded, the rainfall rate increase shows a much better match with the Clausius-Clapeyron rate, suggesting that the “super Clausius-Clapeyron” scaling of rainfall rates with temperature increase is due to the warming-induced increase of tropical cyclone intensity. The increase of tropical cyclone intensity and environmental water vapor, in combination, explain the tropical cyclone rainfall rate increase under global warming.

     
    more » « less
  7. Abstract

    Global Climate Models (GCMs) exhibit substantial biases in their simulation of tropical climate. One particularly problematic bias exists in GCMs' simulation of the tropical rainband known as the Intertropical Convergence Zone (ITCZ). Much of the precipitation on Earth falls within the ITCZ, which plays a key role in setting Earth's temperature by affecting global energy transports, and partially dictates dynamics of the largest interannual mode of climate variability: The El Niño‐Southern Oscillation (ENSO). Most GCMs fail to simulate the mean state of the ITCZ correctly, often exhibiting a “double ITCZ bias,” with rainbands both north and south rather than just north of the equator. These tropical mean state biases limit confidence in climate models' simulation of projected future and paleoclimate states, and reduce the utility of these models for understanding present climate dynamics. Adjusting GCM parameterizations of cloud processes and atmospheric convection can reduce tropical biases, as can artificially correcting sea surface temperatures through modifications to air‐sea fluxes (i.e., “flux adjustment”). Here, we argue that a significant portion of these rainfall and circulation biases are rooted in orographic height being biased low due to assumptions made in fitting observed orography onto GCM grids. We demonstrate that making different, and physically defensible, assumptions that raise the orographic height significantly improves model simulation of climatological features such as the ITCZ and North American rainfall as well as the simulation of ENSO. These findings suggest a simple, physically based, and computationally inexpensive method that can improve climate models and projections of future climate.

     
    more » « less
  8. Abstract

    Future coastal flood hazard at many locations will be impacted by both tropical cyclone (TC) change and relative sea‐level rise (SLR). Despite sea level and TC activity being influenced by common thermodynamic and dynamic climate variables, their future changes are generally considered independently. Here, we investigate correlations between SLR and TC change derived from simulations of 26 Coupled Model Intercomparison Project Phase 6 models. We first explore correlations between SLR and TC activity by inference from two large‐scale factors known to modulate TC activity: potential intensity (PI) and vertical wind shear. Under the high emissions SSP5‐8.5, SLR is strongly correlated with PI change (positively) and vertical wind shear change (negatively) over much of the western North Atlantic and North West Pacific, with global mean surface air temperature (GSAT) modulating the co‐variability. To explore the impact of the joint changes on flood hazard, we conduct climatological–hydrodynamic modeling at five sites along the US East and Gulf Coasts. Positive correlations between SLR and TC change alter flood hazard projections, particularly at Wilmington, Charleston and New Orleans. For example, if positive correlations between SLR and TC changes are ignored in estimating flood hazard at Wilmington, the average projected change to the historical 100 years storm tide event is under‐estimated by 12%. Our results suggest that flood hazard assessments that neglect the joint influence of these factors and that do not reflect the full distribution of GSAT change may not accurately represent future flood hazard.

     
    more » « less
  9. Abstract

    Atlantic tropical cyclones (TCs) can cause significant societal and economic impacts, as 2019's Dorian serves to remind us of these storms' destructiveness. Decades of effort to understand and predict Atlantic TC activity have improved seasonal forecast skill, but large uncertainties still remain, in part due to an incomplete understanding of the drivers of TC variability. Here we identify an association between the East Asian Subtropical Jet Stream (EASJ) during July–October and the frequency of Atlantic TCs (wind speed ≥34 knot) and hurricanes (wind speed ≥64 knot) during August–November based on observations for 1980–2018. This strong association is tied to the impacts of EASJ on a stationary Rossby wave train emanating from East Asia and the tropical Pacific to the North Atlantic, leading to changes in vertical wind shear in the Atlantic Main Development Region (80–20°W, 10–20°N).

     
    more » « less